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Abstract 
Close-range photogrammetry is widely used to measure the surface shape of various ob-

jects and its deformations. The classic approach for this is to use a stereo pair of images, 
which are captured from different angles using two digital video cameras. The surface shape 
is measured by triangulating a set of corresponding two-dimensional points from these imag-
es using a predetermined location of cameras relative to each other. Various algorithms are 
used to find these points. Several photogrammetry methods use cross-correlation for this 
purpose. This paper discusses the possibility of replacing the correlation algorithm with neu-
ral networks to determine displacements of small areas in the images. They allow increasing 
the calculation speed and the spatial resolution of the measurement results. To verify the pos-
sibility of using convolutional networks for photogrammetry tasks, computer and physical 
modeling were carried out. For the first test, a set of synthetically generated images repre-
senting images of the Particle Image Velocimetry method was used. The displacements of 
particles in the images are known, it allows to estimate the accuracy of processing of such im-
ages. For the second test, a series of experimental images with surfaces with different defor-
mation was obtained. Computational experiments were performed to process synthetic and 
experimental images using selected neural networks and a classical cross-correlation algo-
rithm. The limitations on the use of the compared algorithms were determined and their er-
ror in reconstructing the three-dimensional shape of the surface was evaluated. Computer 
and physical modeling have shown the operability and efficiency of neural networks for pro-
cessing photogrammetry images. 

Keywords: Close-range photogrammetry, convolution networks, image pattern correla-
tion technique, cross-correlation. 

 

1. Introduction 
Optical measurement methods are widely used in all fields of science and technology. 

Such methods include methods of close-range photogrammetry [1]. They allow measuring the 
shape of the object surface contactless with high spatial resolution and high accuracy over a 
large area. The basic principle of these methods is to obtain three-dimensional coordinates of 
the object from its two-dimensional images. The main approach for this is to use two digital 
video cameras. Two images of the same object obtained from different angles allow recon-
structing three-dimensional coordinates of the object. To achieve this, it is necessary to de-
termine the corresponding points on the images. For this purpose, various methods are used: 
algorithms for finding key (feature) points, structured illumination, epipolar geometry, cross-
correlation analysis, etc. 
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One of the photogrammetry methods is based on cross-correlation processing of stereo 
pairs of images. It is an Image Pattern Correlation Technique (IPCT) [2-5]. It is based on pro-
cessing algorithms of another method – Particle Image Velocimetry (PIV) [6] and is another 
variant of Digital Image Correlation method (DIC) [7]. 

In contrast, its universality, the method for finding corresponding points based on cross-
correlation analysis has its disadvantages. The first of them is the proportional increasing of 
the calculation complexity with the increasing of the spatial resolution. The second is the di-
rect dependence of the measurement error on the amplitude of the displacement of the corre-
sponding points on the images. The greater the distance between the points, the greater the 
error. To reduce it, it is necessary to iteratively calculate the correlation function with de-
creasing aperture, which causes an increase in computational costs. In our work we attempt-
ed to apply machine learning methods to replace the cross-correlation calculation in the IPCT 
method to solve these problems. 

Machine learning algorithms in PIV tasks have been used for a long time [8]. But due to 
the weak development of such an area as machine learning, this application was very limited 
and therefore was used only at the post-filtration stage. Since about 2012, there has been a 
greater interest in neural networks, namely convolutional neural networks, thanks to a suc-
cessful solution proposed on ImageNet. Now this area has begun to develop actively again, 
not least because of the appearance of affordable and powerful GPUs, on which the execution 
and training of the network is much faster. One of the first proposals for the application of 
neural networks to PIV tasks was suggested in [9]. Since these were the first attempts in a 
new direction, the proposed ideas strongly intersected with cross-correlation algorithms. Two 
32×32-pixel interrogation windows from two images were also uploaded to the network, and 
the network predicted the displacement vector corresponding to these windows. The first at-
tempts [9], although they did not show better results compared to the already known meth-
ods, but they showed the efficiency of the idea, which was further developed. A similar study 
was conducted in [10], where a network with the architecture proposed in [11] was studied. 
Approaching modern solutions, we should mention the deep neural network from [12], which 
was used in [13] for PIV tasks, but with some modifications. The main one is a new database 
for training. More detailed methods of machine learning for diagnostic problems in hydrody-
namics are given in [14-15]. 

In this work, two networks were used for the surface shape measurement problem: Lite-
FlowNet [16] and PIV-LiteFlowNet-en [17]. Both of these networks are successors of the 
FlowNet network [12], designed to receive two images at the input and evaluate the displace-
ment of the optical flow at the output. According to [12], the network is trained on a large 
synthetic dataset and provides acceptable accuracy for estimating rigid motion. However, the 
original FlowNet cannot be directly applied to PIV problems, that was shown in [13]. 

2. Measurement techniques 

2.1 Image Pattern Correlation Technique 

Image Pattern Correlation Technique is an optical method of measuring the shape of a 
surface from its stereo images. The idea of IPCT, as in other photogrammetric methods, is to 
find the position of spatial points with unknown three-dimensional coordinates. For this pur-
pose, two-dimensional coordinates of these points are searched for in two images registered 
with digital video cameras of stereo system. The determined coordinates allow calculating the 
required three-dimensional coordinates of the point with the help of triangulation procedure 
based on the known intrinsic and extrinsic parameters of the cameras. 

IPCT uses a special pattern – a background pattern, usually represented by randomly dis-
tributed dots on a white background, or vice versa. Such a pattern allows to increase the con-
trast of the measured surface and significantly increases the efficiency of cross-correlation 
algorithm. 



Cross-correlation processing of images consists of several consecutive steps. The first step 
is to divide the input images into small areas, the so-called interrogation windows, according 
to the specified parameters. Then a cross-correlation function is calculated for each pair of 
corresponding windows according to the formula 

𝑓(𝑥, 𝑦) ∘ 𝑔(𝑥, 𝑦) = ∫ ∫ 𝑓∗(𝜂, 𝜉) ⋅ 𝑔(𝑥 + 𝜂, 𝑦 + 𝜉)𝑑𝜂𝑑𝜉
∞

−∞

∞

−∞
, (1) 

where f(x, y) and g(x, y) are two-dimensional functions of brightness distribution on images, 
◦ – correlation operation, asterisk * – complex conjugation operation. Usually, calculation is 
performed using fast Fourier transform (FFT) algorithms, by the formula 

𝑓(𝑥, 𝑦) ∘ 𝑔(𝑥, 𝑦) ⇔ 𝐹(𝑢, 𝜈)∗𝐺(𝑢, 𝜈), (2) 
where F(u, v) and G(u, v) – Fourier images of f(x, y) and g(x, y). An additional advantage is 
achieved by calculating the normalized correlation function using the fast algorithm [18] us-
ing the formula 

𝑐𝑛(𝑥, 𝑦) = 𝑐′(𝑥, 𝑦)/[√𝜎1(𝑥, 𝑦)√𝜎2(𝑥, 𝑦)], (3) 

where c`(x, y) – the correlation function of the transformed interrogation windows 
f`(x, y) = f(x, y) −µ1,   g`(x, y) = g(x, y) −µ2 

(µ1, µ2 – the average brightness value in the survey windows f(x, y) and g(x, y)), obtained ac-
cording to formula (2) using the FFT, and σ1 и σ2 – is the standard deviation of brightness in 
the interrogation windows, calculated as 

𝜎1(𝑥, 𝑦) = ∑ ∑ (𝑓(𝑚, 𝑛) − 𝜇1)
2𝑁

𝑛=0
𝑀
𝑚=0 , (4) 

𝜎2(𝑥, 𝑦) = ∑ ∑ (𝑔(𝑚, 𝑛) − 𝜇2)
2𝑁

𝑛=0
𝑀
𝑚=0 . (5) 

The next step is to find the maximum for each calculated cross-correlation function with 
subpixel resolution by interpolating its peak. The most commonly used formula for approxi-
mating the maximum with a Gaussian function is 

𝑥`𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥 + [𝑙𝑛(𝑐−1) − 𝑙𝑛(𝑐+1)]/[2𝑙𝑛(𝑐−1) − 4𝑙𝑛(𝑐0) + 2𝑙𝑛(𝑐+1)], (6) 
where x`max – approximated horizontal coordinate of the maximum; xmax – coordinate of the 
pixel with the maximum value of the correlation function; c0, c-1 and c+1 – function values in 
the maximum and in the closest to it pixels with coordinates xmax − 1 и xmax + 1. Similarly, the 
coordinate of the maximum vertically y`max. 

The result of this algorithm is a vector field of point displacements on two images. It can 
be used to triangulate three-dimensional surface points directly. A single displacement vector 
with its origin defines the two-dimensional coordinates of the interrogation window center in 
the first image, and its end defines the two-dimensional coordinates in the second image. 
During triangulation of two-dimensional points, usually the pinhole camera model is used. 

2.2 Neural networks 
Many neural networks, which were considered when selecting specific candidates to be 

used in our work, have been implemented based on the Caffe library [19]. At the moment, 
their launch is associated with a lot of technical difficulties due to outdated code base. The 
LiteFlowNet-en and LiteFlowNet selected in the first section both have implementations on 
the PyTorch library [20], which allowed to successfully apply them for image processing.  

An important feature of PIV-LiteFlowNet-en in contrast to LiteFlowNet is that at the out-
put image it gives resolution equal to the input image without the use of bilinear interpola-
tion, which increases the accuracy of small displacements.  

Both networks require a CUDA-enabled GPU to run. The amount of video memory on the 
card is important, as it determines with whatresolution the image can be processed on the 
video card. In our work we used the service Google Colab [21], which allocates about 11 GiB of 
GPU memory per user, which allows us to process images of 1900×2000 pixels with a color 
depth of 24 bits. This is enough to process the experimental images used in this work at full 
resolution in the working area. 



3. Research methods 

3.1 Computer modeling 

The first step in evaluating the possibility of using neural networks for photogrammetry 
was computer modeling. It consisted in processing the synthetic images using two selected 
networks and a standard cross-correlation algorithm [22]. The modeling evaluated the accu-
racy of determining the displacements on the synthetic images using different approaches. As 
test images the data set proposed in [13] was used. This set is a modeled PIV images of flows 
with different conditions and parameters. Details of the dataset and mean error for three 
tested algorithms are shown in Table 1. The result of modeling in form of the mean square er-
ror of the true flow (defined in the modeling) with the measured flow is shown in Figure 1. 
Processing by cross-correlation was performed using a software package of our own design 
[23]. Processing parameters: interrogation window size 24×24 pixels, interrogation window 
offset 4 pixels, approximation of correlation peak by Gaussian distribution. 

 
Table 1. Image parameters in the dataset and computer modeling results 

Case 
name 

Description Condition 
Images 
quanti-
ty 

PIV-
Lite-
FlowNet-en 
error, pixels 

Lite-
FlowNet 
error, pixels 

Cross-
correla-
tion error, 
pixels 

Back-step 
Backward 
stepping flow 

Re = 800 
Re = 1000 
Re = 1200 
Re = 1500 

600 
600 
1000 
1000 

0,043 0,155 0,292 

Cylinder 
Flow over a 
circular cyl-
inder 

Re = 40 
Re = 150 
Re = 200 
Re = 300 
Re = 400 

50 
500 
500 
500 
500 

0,202 0,315 0,312 

DNS-
turbu-
lence 

A homoge-
neous and 
isotropic 
turbulence 
flow 

- 2000 0,204 0,589 0,783 

JHTDB-
channel 

Channel flow  - 1900 0,080 0,218 0,311 

JHTDB-
channel 
hd 

Forced iso-
tropic turbu-
lence  

- 600 0,052 0,195 0,244 

JHTDB-
isotropic 
1024 hd 

Forced iso-
tropic turbu-
lence  

- 2000 0,140 0,288 0,313 

JHTDB-
mhd 1024 
hd 

Forced MHD 
turbulence 

- 800 0,090 0,349 0,382 

SQG 

Sea surface 
flow driven 
by SQG 
model 

- 1500 0,203 0,652 0,875 

Uniform Uniform flow 
Displace-
ment 0÷5 
pixels 

1000 0,033 0,141 0,253 



Figure 1 shows that the PIV-LiteFlowNet-en network has the best accuracy and small er-
ror variation for all flow cases considered. The LiteFlowNet network, which was not trained 
for PIV tasks, though has a large error, but shows good results, indicating its versatility for 
various applications. The cross-correlation method generally showed worse results, except for 
the "Cylinder" case, where it has a significant error variation. There is another disadvantage 
of cross-correlation processing – a vector field of lower density. While neural networks get a 
field of resolution equal to the size of the input image, for cross-correlation the field is 4 times 
less dense. This is due to the step between the interrogation windows of 4 pixels. But cross-
correlation has the advantage that its calculation is executed entirely on the CPU, while neu-
ral networks need to use the GPU to achieve the processing speed advantage. 

 

 
Figure 1. Results of computer modeling for two networks and cross-correlation 

3.2 Physical modeling 

To evaluate the results of processing by the compared algorithms with physical modeling, 
150 pairs of experimental images of the surface with different deformations were used. The 
images were obtained using the imitator of deformable surface (IDS) described in [24]. The 
IDS allows to arbitrarily set the shape of the surface by means of digital servo-machines.  

The IPCT method according to the algorithm described in [5] was used to reconstruct the 
surface shape. As pre-processing, the background pattern images were pre-matched using fi-
ducial markers so, that the measured surface will be oriented perpendicularly to the optical 
axis of the camera. The size of each stereo pair was individual, but usually did not exceed 
1700×1500 pixels. The second stage of image processing was a cross-correlation analysis (de-
scribed in 2.1), which results were vector fields of surface point displacements between stereo 
pair images. The third stage was calculation of triangulation to determine three-dimensional 
surface coordinates. Figure 2 shows an example of stereo pair processing using PIV-
LiteFlowNet-en. The results of perspective transformation are shown in Figure 2(c-d). 



 

 
Figure 2. Example of stereo pair processing in experimental modeling, all samples measured 
in pixels: a, b – original images; c, d – results of perspective transformations; e – visualiza-

tion of sparse vector field; f – visualization of vector field in full resolution; g – representation 
of deformation amplitude using color map 

 
Before comparing the two selected networks and cross-correlation, it is necessary to de-

termine the equivalent conditions for these algorithms. Figure 3 shows the vector fields for 
the same stereo pair, but at different resolutions of the image. Figure shows that the PIV-
LiteFlowNet-en network cannot cope with offsets greater than ~12-13 pixels. For the Lite-
FlowNet network, this value is ~80-90 pixels. 

 

 
Figure 3. PIV-LiteFlowNet-en processing results for experimental images with different input 

image resolutions, colormap shows displacements in pixels 
 
In order to compare networks with different ranges of measured displacements, it was 

decided to perform a calculation for images with different initial resolutions. In this case the 
displacements on the images will change proportionally to their size. This will allow compar-
ing the results of the algorithms on the same experimental data. Calculation of the RMS of the 
reprojection error was performed for 10 resolutions of each experimental stereo pair. The se-
ries of resolutions used in the calculations was obtained by the following formula 

𝑅𝑘 = 𝑅0 −
𝑅0
10

𝑘, (7) 

where k = 0,1,2…9; R0 – the original size of the side of the image. In this case, the aspect ratio 
of the images is preserved. For the cross-correlation algorithm it was also necessary to define 
parameters for image processing. It was impossible to choose universal parameters, because 
the displacements can reach more than 100 pixels. Therefore, the size of the interrogation 
window must be determined individually for each resolution. The final processing parameters 
of the three tested algorithms are presented in Table 2. 



Figure 4 shows the result of testing the three algorithms. Each curve is an average of 150 
stereo pairs. In order to test the influence of the total intensity on the image, an inverse ver-
sion of this pair was created on the basis of each pair of images. This is due to the fact that the 
IPCT method is characterized by black dots on a white background, while the PIV method is 
characterized by white dots on a black background. 
 
Table 2. Image processing parameters with the algorithms being tested 
Resolution, pixels 
 

Interrogation window size, 
pixels 

Step for interrogation win-
dow, pixels 

1700×1500 256 128 

1530×1350 256 128 

1360×1200 196 98 

1190×1050 196 98 

1020×900 128 64 

850×750 128 64 

680×600 64 32 

510×450 64 32 

340×300 32 16 

170×150 32 16 

 
The following conclusions can be made from the processing results: 
1. The cross-correlation algorithm shows a stable reprojection error for almost all resolu-

tions. It is not affected by intensity inversion. 
2. LiteFlowNet shows the best results among all the algorithms, while image inversion 

negatively affects its performance. 
3. PIV-LiteFlowNet-en shows poor results due to large displacements in the images. At a 

resolution of 340×300 pixels, the displacements become quite small, but due to the high 
compression, the quality of the images does not allow the algorithm to achieve high accuracy. 
Image inversion improves the performance of the algorithm. 

4. At 340×300 and 170×150 resolution, all algorithms show a decrease in accuracy due to 
strong image resizing. 

 

 
Figure 4. Average RMS value of the reprojection error for different resolutions for  

the three algorithms studied in physical modeling 
 



To better understand the behavior of the algorithms, Figure 5 shows the RMS error for 
two stereo pairs: at small and large displacements in the images. Figure 5(a) shows graphs in 
the same plane for small and large displacements, 5(b) the value of this displacement for each 
resolution, 5(c) enlarged area 5(a), demonstrating the behavior of algorithms at small dis-
placements. Comparing the graphs, we can once again see that the maximum estimated dis-
placement of PIV-LiteFlowNet-en is about 10 pixels, and of LiteFlowNet about 80 pixels. 

 

 
Figure 5. Average RMS value of the reprojection error for different displacement amplitudes 
in physical modeling: a – RMS of the reprojection error for small and large displacements; b 
– offset value for the two cases; c – enlarged area of the graph (a) to show the behavior of the 

algorithms at small displacements 
 
For cross-correlation, the estimate of the maximum displacement depends on the size of 

the interrogation window. The maximum measured displacement should be less than 1/2 or 
1/3 of the interrogation window size. From graphs 5(b) and 5(c) it can be seen that once the 
displacements in the images go down to 10 pixels or fewer, the PIV-LiteFlowNet-en network 
shows better results than the others, which further confirms the maximum estimated dis-
placement. The average RMS of the reprojection error in Figure 5 for all algorithms is quite 
large, i.e., close to or greater than 1 pixel. This is explained by the fact that at large displace-
ments, as in Figure 5, the error increases dramatically, which leads to increasing of the aver-
age error. 

Based on the plots in Figure 5 the minimum error for PIV-LiteFlowNet-en is achieved at 
510:450 resolution, for LiteFlowNet at 680:600. Figure 6 shows plots of reprojection error 
for each pair of images out of 150 taken. Also, the 850:750 and 1700:1500 resolutions are 
plotted for comparison. All graphs are sorted in order of increasing error for clarity. All plots, 
except for the 1700:1500 case, show the same patterns. The LiteFlowNet network has less er-
ror compared to the cross-correlation algorithm with approximately the same graph shape, 
only in a few cases does the cross-correlation exceed the accuracy of the network. The PIV-



LiteFlowNet-en network has the best accuracy of all the algorithms in about 50 cases. At the 
same time, it has a better performance in image inversion. The exception is the case at 
510:450 resolution, where the accuracy for the image inversion case does not fall far behind 
the original images. 

 

 
Figure 6. RMS error for each captured image pair for the three investigated algorithms at dif-

ferent resolutions in physical modeling 
 
The fact that the PIV-LiteFlowNet-en network performs the best only in ~50 cases is due 

to the fact that even at 510:450 resolution, most image pairs have displacements greater than 
10 pixels. Therefore, this network exceeds the other algorithms in only 1/3 of the cases. To 
demonstrate that none of the algorithms are able to process full resolution images with high 
accuracy, the case of 1700:1500 is given, which shows that acceptable accuracy is achieved by 
cross-correlation in about 10 cases and by LiteFlowNet in about 50 cases, which is not even 
half of the entire set. This is due to the large displacements in the images. 

4. Conclusions 
The paper describes the application of neural networks to the reconstruction of three-

dimensional shape of the object surface by photogrammetry. The results of their processing 
were compared with the already proven algorithm based on cross-correlation. It allows esti-
mating with an acceptable speed only the sparse vector field, by which three-dimensional 
points are calculated with triangulation. To find a solution to this problem, we reviewed ma-
chine learning methods, of which two neural networks LiteFlowNet and PIV-LiteFlowNet-en 
were selected. These networks allow estimating the vector field in full image resolution and at 
the same time have a higher calculation speed in comparison with cross-correlation. But the 
full gain in speed can be obtained only with the use of a graphics processor.  



It was found that neural networks have a limit on the amount of correctly estimated dis-
placement. For PIV-LiteFlowNet-en this limit was 12-13 pixels, and for LiteFlowNet about 80 
pixels. For the first network, this can be explained by the training sample, and for the second 
by the network design. Also, the difference in the processing of original and inverse image 
networks was revealed, which is also a consequence of the training samples. 

According to the processing results, LiteFlowNet exceeded the algorithm based on cross-
correlation and PIV-LiteFlowNet-en in the sum for all image resolutions. But if we compare 
within the limitations of the algorithms, PIV-LiteFlowNet-en has better accuracy. At the same 
time, for processing images typical for photogrammetry in full resolution, none of the meth-
ods is satisfactory. For full application of such neural networks, their modification is required 
for the investigated task. 

Conducted physical modeling to check selected approaches to image processing for pho-
togrammetry problem showed their performance and efficiency. But it is necessary to solve 
several problems for their application in practice. The selected neural networks are not fully 
suitable for the problem under study due to the limitation of the estimated displacement val-
ue and high complexity of their running. For successful practical application of machine 
learning it is necessary to modify the design of selected neural networks, or to develop their 
own design, and to train them on experimental images, specific to photogrammetry. 
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